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A numerical proceure is introduced to solve the one-dimcnsional equations of gas- 
dynamics for a cylindrically or spherically symmetric flow. The method consists of a 
judicious combination of Glimm’s method and operator splitting. The method is 
applied to the problem of a converging cylindrical shock. 

1. Introduction 

symmetric flow can be written in the form 
The one-dimesional equations for an inviscid, non-heat-conducting, radially 

U,+F(U), = -W(U), 
where 

where p is the density, u is the velocity, m = pu is the momentum, p is the pressure, 
e is the energy per unit volume, t is time, r is the space co-ordinate of symmetry, 
a is a constant which is equal to 2 for cylindrical symmetry and 3 for spherical 
symmetry, and the subscripts indicate differentiation. We may write 

e = p / ( y  - 1) + +pu2, (3) 

where y is the ratio of specific heats (a constant greater than 1).  
There are two major problems involved in solving the system (1)  directly. The 

first is its singular nature near the axis ( r  = 0), i.e. there are singular terms propor- 
tional to l/r. The second problem is that the momentum equation [the second 
component equation of (l)]  cannot be put in conservation form. 

These problems cause major difficulties near the axis. These are usually overcome 
by some ad hoc method such as extrapolation (Payne 1956). Another approach has 
been to treat this as a problem in Cartesian co-ordinates in two space dimensions 
(Lapidus 1971). 

I n  the method described below both of these problems have been completely 
eliminated. Thus there is no need to resort to any trickery in order to solve the 
system (1) .  
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2. Outline of the method 
The first step in the problem is to use the method known as operator splitting to 

remove the inhomogeneous terms - W(U) from the system (1) .  Thus we solve the 
system 

which represents the one-dimensional equations of gasdynamics in Cartesian 
co-ordinates. 

The method used to solve system (4) is the random-choice method introduced by 
Glimm (1965) and developed for hydrodynamics by Chorin (1976). Details of this 
method will be given in the next section, for completeness. 

Once system (4) has been solved, the system of ordinary differential equations 

U t + F ( U ) ,  = 0, (4) 

ut = -W(U) (5) 

is solved, the solution of system (4) being used to determine the inhomogeneous 
term - W in (5 ) .  There arc several reasons for this approach, which will be discussed 
in later sections. 

3. Glimm’s method 
Consider the nonlinear system of equations (4). Divide time into intervals of length 

At and let Ar be the spatial increment. The solution is to be evaluated at times %At, 
where n is a non-negative integer, at  the spatial points iAr, where i = 0, & 1 ,  & 2, . . . , 
and a t  times (n + $)At at (i + $)Ar. 

The method is a two-step method. Let fi? approximate U(iAr ,nAt )  and fi?$ 
approximate U ( ( i + g ) A r ,  (n+&)At)  in (4). To find the solution fi?#, consider the 
system (4) along with the piecewise-constant initial data 

U(r ,  nAt) = (a?+,, r > ( i + i ) A r ,  
il?, r < ( i++)Ar .  

This gives a sequence of Riemann problems. If At < Ar/2( IuI +c),  where c is the local 
sound speed, the waves generated by the different Riemann problems will not interact. 
Hence the solution v ( r ,  t )  to the Riemann problem can be combined into a single 
exact solution; see figure 1.  Let t,, be an equidistributed random variabIe which is 
given by the Lebesgue measure on the interval [ - +, 93. Define 

fi?+& z+* = v((i+E,,)Ar, (n+&)At) ;  (7)  
see figure 2. 

A t  each time step, the solution is approximated by a piecewise-constant function. 
The solution is then advanced in time exactly and the new values are sampled. The 
method depends on solving the Riemann problem exactly and inexpensively. 

Chorin (1976; see also Sod 1976, 1977) modified an iterative method due to 
Godunov (1959), which will now be described. Consider the system (4) with the 
initial data 
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FIQURE 1. Sequence of Riemann problems on grid. 

t = ( n + ; )  A r 

I I I f = n h  t 
(i-i) A r iA r (i+ )) A r (i+ 1) A r (;++I A r 

FIGURE 2. Sampling procedure for Glimm’s scheme. 

Sr 
b 

FI~URE 3. Solution of Rieinann problem. 
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The solution at  later times looks like figure 3, where S ,  and S, are either a shock or a 
centred rarefaction wave. The region S ,  is a steady state. The lines I ,  and I ,  separate 
the states. The contact surface drldt = u* separates the region into two parts with 
possibly different values of p*, but equal values of u* and p*. 

Using this iterative method we first evaluate p* in the state S,. Define the quantity 

MZ = (Pz-P*,l(uz-u*). (9) 

(10) 

If the left wave is a shock, using the jump condition U,[p] = [ p u ]  we obtain 

Ml = Pl(ul- 'Z) = p*(u* - ' 1 ) 7  

where U, is the velocity of the left shock and p* is the density in the portion of S,  
adjoining the left shock. Similarly, define the quantity 

Mr = (Pr -P* )I(ur - % * ) a  

l!, = -p,(u,-U,) = - p  *(u* - v,), 

(11) 

(12) 

If the right wave is a shock, using the jump condition Ur[p] = [ p u ]  we obtain 

where U, is the velocity of the right shock and p* is the density in the portion of S, 
adjoining the right shock. 

In  either case [(9) or (10) for M z  and (1 1) or (12) for 4 .1  we obtain 

Mz = (P1Pl)t $(23*lPd7 (13) 

Mr = (Prpr)'+(P*IPr), (14) 
where 

Upon elimination of u* from (9) and (11) we obtain 

Equations (13), (14) and (16) are three equations in three unknowns for which there 
exists a real solution. After choosing a starting value pg (or MP and M t ) ,  we iterate 
using these three equations. Here we choose p$ = &(p,+p,) (for details see Chorin 
1976; or Sod 1976). 

After p+, M,, and M, have been determined we may obtain u* by eliminating p* 
from (9) and (10) : 

For a discussion of the method of choosing the random numbers most efficiently, 
see Chorin (1976). 
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4. Solution of the ordinary differential equations 

ordinary differential equations ( 5 ) .  We approximate (5) by 
Once the solution 5?+1 of (4) has been obtained, we have to solve the system of 

or 

This approximation (18) is the basic Cauchy-Euler scheme, which is just first-order 
accurate. However, the Glimm scheme is at most fk-st-order accurate so there is no 
reason for using a high-order method for solving the system of ordinary differential 
equations. 

Since this system (5) is solved only at  interior points and the scheme (18) does not 
require values at  r = 0, the singularity at  the axis is eliminated. 

5. Boundary conditions 
Boundary conditions need be applied only to the system (4) since the system of 

ordinary differential equations (5) uses only interior points. So the procedure des- 
cribed by Chorin (1976) readily handles the boundary condition at  the axis ( r  = 0). 
The boundary condition is imposed at  the grid point closest to r = 0,  say i, Ar. A 
fake left state is created at  (i, - 3)Ar by setting 

P i 0 - i  = Pio+t, Qio-+ = - Q i e + + t  Pio-4 = Pii,++. 

In  this way the shock or rarefaction wave will reflect, which on the average is exact. 

6. Application to a converging cylindrical shock 
Initially a cylindrical diaphragm of radius r, separates two uniform regions of gas 

at rest as in a shock tube, the outer pressure and density being larger than the inner 
ones. After the diaphragm is ruptured ( t  > 0) ,  a shock wave is created and travels 
into the low pressure region followed by a contact discontinuity. A rarefaction wave 
travels into the high pressure region. See figure 4. 

It is known that a cylindrical shock wave in a compressible fluid increases in 
strength as it converges towards the axis. This can be seen experimentally in Perry & 
Kantrowitz (1951). 

In  the example given below the pressure and the density in the inner region were 
set equal to 1-0 and the pressure and density in the outer region were set equal to 4.0. 
This will produce a shock with an initial strength of 1.93, a contact discontinuity and 
a rarefaction wave. We took Ar = 0.01. The time step At is chosen such that the 
Courant-Friedrichs-Lewy condition is satisfied, i.e. 

max (IuI+c)At/Ar < 1,  

where c is the local sound speed. 
In  figure 5 (a )  the pressure distribution is displayed at  time intervals of 0.05. The 

shock appears as a rapid variation in p which is completely sharp, i.e. the number of 
zones over which this variation takes place is zero. As time increases the shock 
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FIGURE 4. Flow pattern for converging cylindrical shock. 

propagates towards the axis. It is observed that the strength of the shock increases 
with time. After the passage of the shock, the pressure behind the shock increases. 
When the shock arrives at  the axis it is reflected, its strength rises to a large but finite 
value and a diverging shock appears. It is also observed that the pressure at a given 
point behind the reflected shock decreases with time. 

In figure 5 ( b )  the velocity of the gas is displayed. The behaviour is similar to that 
of the pressure except that the converging shock decreases the velocity from zero to 
a negative value. When the shock is reflected from the axis, the diverging shock has 
the effect of producing a small positive (outward) velocity. As in the case of the pres- 
sure profile, at  a given point behind the converging shock the velocity increases with 
time and at a given point behind the diverging shock the velocity decreases 
with time. 

The density and energy profiles are displayed in figures 5 ( c )  and ( d )  respectively. 
The basic properties of the shock are similar to those of the pressure distribution, 
except that the rise in density across the shock is smaller owing to a temperature 
increase. In  the density and energy profiles a contact discontinuity appears. It is 
a result of using Glimm’s scheme that the contact discontinuity (as well as the shock 
wave) is completely sharp. The contact discontinuity propagates towards the 
axis behind the converging shock and is traversed by the reflected (outgoing) 
shock. 

Figure 6 shows the density profile where the contact discontinuity and the reflected 
shock wave have crossed. For a polytropie gas with the same values of y ,  higher sound 
speeds correspond to higher densities (Courant & Friedrichs 1948, p. 179). The inter- 
action of a diverging shock wave and a contact discontinuity propagating towards 
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FIG~RES 5 (a )  and (a). For legend see page 792. 
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FIGURE 5. (a) Pressure, (6) velocity, (c)  density and (d) energy 

profiles at  time intervals of 0.05. 
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FIGURE 6 .  Density profile after interaction of diverging shock 
and contact discontinuity at time t = 0.6. 

the axis results in a reflected (converging) shock (represented by A ) ,  a contact 
discontinuity propagating towards the axis (represented by B )  and a transmitted 
(diverging) shock (represented by C). 

In  general, the overall trend of the results agrees with those of Abarbanel & Gold- 
berg (1 972), Lapidus ( 1  971) and Payne (1956). There is, however, one major difference : 
the time at which the shock reaches the axis. Our method is in agreement with the 
method of Abarbanel & Goldberg. However, for the methods of Lapidus and Payne 
the shock reaches the axis sooner. 

It should be noted that, as a result of the randomness of Glimm’s method, at  a given 
time the position of the shock or contact discontinuity may not be exact. Yet on the 
average their positions are exact. 

With the three other methods used in the comparison, the shock and contact 
discontinuity are smeared. The smearing of the shock is less dramatic. The contact 
discontinuity obtained by Payne’s method is almost immediately smeared to such a 
degree that it is barely visible. However, our technique produces perfectly sharp 
shocks and contact discontinuities. 

As discussed above, the interaction of the reflected shock and the contact dis- 
continuity will produce a contact discontinuity, a transmitted shock and a reflected 
shock. The reflected shock is produced by our technique (see figure 6) but is not 
produced by the methods of Abarbanel & Goldberg, Lapidus and Payne. 
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7. Conclusions 
This method reduces the problem of solving the one-dimensional equations of gas- 

dynamics for a cylindrically or spherically symmetric flow to solving the one- 
dimensional equations of gasdynamics in Cartesian co-ordinates and a single system 
of ordinary differential equations, by using operator splitting. 

The equations of gasdynamics are solved using Glimm’s method, which keeps the 
shock waves and contact discontinuities perfectly sharp. The ordinary differential 
equations are solved using the Csuchy-Euler scheme at  the interior points only and 
for one time step. Thus the singular nature of the original system near the axis is 
eliminated. Since the equations of gasdynamics are solved in Cartesian co-ordinates 
the momentum equation can be written in conservation form. 

It should be noted that the roughness in the rarefaction wave is a result of the 
randomness of the Glimm scheme. 

In  all our calculations there were 100 spatial grid points, and it takes about 10.3 s 
on a CDC 7600 to complete 300 time steps.? 
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discussions and comments, and Professor Peter Lax and Mr Phillip Colella for their 
critical reading of the manuscript. possible. This work was supported in part by the 
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t The computer program used to obtain the results above is available from the author. 
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